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ABSTRACT 

 As the only gateway of material, particularly nutrients, from the Pacific to the 

Arctic Ocean, the biological and chemical transformations that occur within the Chukchi 

Sea are critical for understanding Arctic ecosystems.  This study examines the 

biogeochemical cycling of the macronutrient phosphorus (P) relative to carbon and 

nitrogen in the eastern Chukchi Sea during the ICESCAPE’s mission.  Sea ice and water 

column dissolved and particulate phosphorus samples were collected during two summer 

expeditions in 2010 (n=593) and 2011 (n=989).  Despite being a landlocked marginal sea, 

the P pool present within the Chukchi Sea was substantially modified by biological 

processes with 30-40% of the total dissolved pool (TDP) comprised of organic P (DOP) 

and nearly 50% of total particulate P comprised of organic P forms. Surprisingly the 

offshore waters held significantly higher concentrations of P in all forms throughout the 

Chukchi Sea (TP2010 = 1.54 ± 0.64 µM, TP2011 = 1.58 ± 0.67 µM; ±1 standard deviation), 

suggesting coastal inputs of P were relatively small during our sampling. This increase 

offshore highlights the potential importance of sea ice melt in the addition of nutrients to 

the surface waters. Upon the examination of ice cores collected, this study suggests that 

the impact of sea ice melt depends heavily on whether the ice is clean or sediment-laden, 

as their particulate C:N:P ratios vary by over a factor of 10. The dissolved data also 

suggests the potential for N:P to be altered in favor nitrogen from 0.44 to 0.64, though 

overall concentrations would be diluted throughout the mixed layer. 
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CHAPTER 1 

INTRODUCTION 

The Arctic Ocean is undergoing significant changes in its physical and 

biogeochemical environment due to rising water temperatures, melting sea ice, and 

increases in riverine drainage (Arnell 2005, Serreze et al. 2007, Stroeve et al. 2012, Post 

et al. 2013). The 2007-2010 average September sea ice extent shows a 40% decline 

compared to measurements taken 20-30 years ago (Stroeve et al. 2012). Sea ice 

distributions reached record lows in 2012. Furthermore models suggest that the entire 

Arctic will become seasonally ice free as early as 2040 (Holland et al. 2006, Wang and 

Overland 2009).  Indeed, some Arctic seas have already begun to experience ice free 

seasons, including the Chukchi Sea (Stroeve et al. 2012). Coincident with this loss of sea 

ice, is a significant increase in primary production, mainly due to open water expansion 

and duration of the open water season (Arrigo and van Dijken 2011).  This increase in 

water column primary production occurs simultaneously with dwindling sea ice primary 

production, which likely contributes greater than 50% of the annual primary production 

within the central Arctic (Gosselin et al. 1997).  Sea ice loss also influences the timing of 

blooms (allowing for blooms to occur earlier in the season with greater sunlight 

penetration), disrupts predation, and may provide an important source of food to pelagic 

and benthic biota (Leu et al. 2011).  

As nutrient rich Pacific waters make their way through the only pathway to the 

Arctic, the Chukchi Sea via the Bering Strait, they are impacted by a variety of processes,
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 including coastal inputs, sediment resuspension, redox reactions (e.g., denitrification), 

variable ice cover, and primary production (Frey et al. 2014).  Similar to the rest of the 

Arctic Ocean, the Chukchi Sea has experienced an increase in water column primary 

production of almost 50% over the past 15 years, one of the highest increases in primary 

production throughout the region.  This dramatic increase is likely due to greater light 

penetration as a result of declining sea ice and enhanced melt ponding .,(Arrigo and van 

Dijken 2011, Frey et al. 2011, Grebmeier 2012, Petrenko et al. 2013). It is important to 

note, however, these estimates do not include primary productivity within or beneath sea 

ice, such as the massive under ice bloom observed in 2011 (Arrigo et al. 2012).  

Furthermore, nearly 70% of the resulting carbon fixed in the southeast Chukchi from 

water column primary production is believed to settle to the sea floor where it can be 

utilized by benthic fauna (Cooney and Coyle 1982, Walsh et al. 1989, McTigue et al. 

2015).   

Over the last decade, Pacific waters transported from the Chukchi into the 

Beaufort Sea have declined by over 80%, despite the increase of water flow through the 

Bering Strait (Brugler et al. 2014). Most of this decline has occurred during the summer 

months; thus it is hypothesized that the intensifying summer easterly winds, which 

counteract the north easterly flowing current along the shelf, are to blame for this large 

scale decline (Moore 2012, Brugler et al. 2014, Frey et al. 2015).  Modifications in water 

circulation potentially impacts the magnitude and composition of the nutrients supplied to 

the Arctic Ocean as well as biogeochemical cycling in the north Chukchi and Beaufort 

seas.  
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Phosphorus (P) is an essential macronutrient that influences biological production 

and community structures in a variety of marine systems (Karl 2014). Within the ocean, P 

occurs in both organic and inorganic forms and is actively partitioned between dissolved 

and particulate phases via a suite of biologically and chemically mediated reactions. 

While many previous studies have focused mainly on inorganic P, as it is the most readily 

available form (e.g., Benitez-Nelson 2000, Paytan and McLaughlin 2007) numerous 

studies now recognize that organisms also utilize organic P compounds even when 

inorganic P concentrations are relatively high (> 0.2 µM) (e.g., Mortazavil et al. 2000, 

Dyhrman et al. 2006, Sylvan et al. 2006, Huang and Zhang 2010, Karl 2014). Therefore, 

understanding the distribution and concentrations of all P forms is critical for examining 

nutrient dynamics.  Nevertheless, relatively little is known regarding its distribution 

within marine dissolved and particulate matter in the Arctic Ocean, particularly in the 

Chukchi Sea.  In this study, we analyzed multiple water column and sea ice core samples 

for dissolved and particulate P that were collected throughout the eastern Chukchi Sea 

during the summers of 2010 and 2011 as part of the NASA’s Impact of Climate Change 

on the Ecosystems and Chemistry of the Arctic Pacific Environment (ICESCAPE) 

Mission.  The goal of this study was to improve our understanding of the source, 

composition, and distribution of dissolved and particulate P within this climate impacted 

ecosystem.
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Study Site and Sample Collection 

As part of the ICESCAPE field mission, the Chukchi Sea was sampled during two 

summer cruises, 15 June - 22 July 2010 and 25 June - 29 July 2011 aboard the USCGC 

Healy (Figure 2.1). During the 2010 cruise, 140 water column (n=135) and ice (n=10) 

stations were sampled from the Bering Strait northward to Barrow Canyon. Dissolved 

and/or particulate P were sampled from 121 of these stations with 543 samples analyzed. 

Due to decreased ice cover, the 2011 cruise extended from the Bering Strait northward to 

the southern Beaufort Sea; 173 stations were sampled, including nine ice core stations. 

Dissolved and/or particulate data was analyzed in 553 samples from 104 stations. All ice 

stations were comprised of only first year ice. Both cruises encompassed sections of 

major water masses. The Alaska Coastal Waters were identified by high temperatures 

(>2°C) and salinities between 30 and 33.64, while the Chukchi Summer Waters were 

characterized by lower temperatures (-1-2°C), but with similar salinities (Brugler et al. 

2014). Bering Strait waters, while present, were more difficult to distinguish due to solar 

warming of the mixed layer and relatively limited knowledge regarding its flow path 

(Coachman et al. 1975).  Atlantic deep waters were also sampled and characterized by 

low temperatures (< -1.26°C) and high salinities (> 33.64) (Brugler et al. 2014). 

 Water column data was obtained by deploying a conductivity, 

temperature, and depth sensor (CTD) on a rosette system equipped with twelve 10 L 
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Niskin bottles. The CTD/rosette system also included a photosynthetically available 

radiation (PAR) sensor, and a fluorometer. Water samples were collected at various 

depths (roughly 2, 10, 25, 50, 100, 200, 500, 1000, and 2000 m depending on water 

depth) and analyzed for chlorophyll a, and dissolved inorganic nutrients (i.e. nitrate 

silicate, phosphate). 

 Ice core data was collected using a custom built CRREL ice coring system 

with a diameter of 10 cm. Cores used for nutrient analysis during the 2010 cruise (n = 21) 

were melted in a known amount of filtered surface seawater (usually 2 L per 10 cm 

section), with salinity measurements recorded pre and post melt. As such, no dissolved 

nutrient data are available.  These waters were then filtered for particulate P analysis onto 

a 1N HCl washed and 500°C combusted 25 mm GF/F filter (~0.7 µm) and frozen until 

lab analysis. In 2011, the ice cores used for nutrient analysis were melted without 

dilution. Particulate and dissolved nutrient analyses were conducted on the resulting melt 

water.  During the 2010 cruise, there were visibly sediment laden sea ice cores, which 

were later separated for comparison based on visual differences.  

2.2 Ship board Analysis 

Fluorescence data were collected at each station using a Wetlabs Chlorophyll 

fluorometer. Additional samples for chlorophyll a analysis were filtered onto a 25 mm 

Whatman GF/F (~0.7 µm) filter, placed in 5 mL of 90% acetone and extracted in the dark 

at 3°C for 24 hours. Chlorophyll a concentrations were then measured fluorometrically 

using a Turner fluorometer 10-Au (Holm-Hansen et al. 1965). Extracted chlorophyll 

measurements were used to calibrate fluorescence based chlorophyll a measurements in 

remaining samples (Arrigo et al. 2014). 
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Total inorganic nutrients (unfiltered) were analyzed on a segmented continuous 

flow auto analyzer within a few hours of collection on the ship. [NO3
-], [NO2

-] and 

[Si(OH)4] analysis was performed using a modification of the method outlined by 

Armstrong et al. (1967). While [NH4
+] was determined fluorometrically according to 

Kérouel and Aminot (1997), and [H2PO4
-] was measured using the ammonium molybdate 

method described in Bernhardt and Wilhelms (1967) (Brown et al. 2015). 

2.3 Dissolved Analysis  

Dissolved P samples were collected by filtering ~40 mL of seawater through a 

500°C pre-combusted and 1N HCl washed, 25 mm GF/F filter (~0.7 µm) and frozen until 

analysis. Soluble reactive P (SRP) was measured according to the spectrophotometric 

method described in Koroleff (1983).  Total dissolved P (TDP) was measured by the high 

temperature ash/hydrolysis technique outlined in Monaghan and Ruttenberg (1999). Both 

SRP and TDP analyses have a detection limit of 0.07 µM. Dissolved organic P (DOP) 

was calculated based on the difference between the two measurements, i.e. TDP - SRP = 

DOP.  Approximately 11% of samples were run in duplicate, with an average coefficient 

of variation (CV) of 6.0 ± 5.2%. It is important to note that SRP and DOP are analytically 

defined; therefore SRP may contain acid-labile organic compounds, such as simple 

sugars, while DOP may contain acid insoluble inorganic compounds, such as 

polyphosphates (Monaghan and Ruttenberg 1999, Benitez-Nelson 2000). Comparison of 

ship board auto-analysis versus laboratory SRP measurements found that auto-analyzed P 

values were on average 13% greater than filtered SRP concentrations, likely due to the 

presence of reactive particulate P. 
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2.4 Particulate Analysis 

Samples for particulate nitrogen (PN) and particulate organic carbon (POC) were 

filtered onto a pre-combusted 25 mm Whatman GF/F filter (~0.7 µm) and stored frozen 

until analysis. The POC filters were fumed in a desiccator with concentrated HCl. The 

PN and POC samples were subsequently dried at 60°C, and packed into tin capsules for 

elemental analysis. Peach leaves and glutamic acid were used as calibration standards for 

PN and POC (Mills et al. 2015). Particulate P samples were filtered onto a 500°C pre-

combusted, 1N HCl washed 25 mm Whatman GF/F filter (~0.7 µm), frozen and stored 

until analysis. Ice core particulate total carbon (PC) and PN were analyzed from surplus P 

filters.  

 Total particulate phosphorus (TPP) and particulate inorganic phosphorus 

(PIP) were analyzed according to the ash/hydrolysis method outlined by Aspila et al. 

(1976) as modified by Benitez-Nelson et al. (2007). Particulate organic phosphorus 

(POP) was determined by the difference, i.e. TPP – PIP = POP. Recovery efficiency and 

reproducibility for each sample set was assessed from the quadruplicate analysis of two 

certified reference materials (NIST 1515, tomato leaves, certified 0.216% P by weight, 

and NIST 1673a, estuarine sediment, certified 0.027% P by weight). The distinction 

between PIP and POP concentrations is again operationally defined. Therefore it is 

probable that the inorganic P fraction contains some labile organic P compounds and vice 

versa (Benitez-Nelson et al. 2004). Approximately, 5% of the samples were run in 

duplicate, with average CV of 5.3 ± 3.9%.  Average GF/F filter blanks were below the 

0.07 µM P limit of detection. 
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2.5 Statistics  

All data sets were tested for normality using the Lillifor’s significance correction 

K-S test (Lilliefors 1967). Much of the data experiences small departures from normality. 

Due to their robust nature, parametric t-tests were used to determine significant 

differences (p ≤ 0.05). One standard deviation is presented alongside all arithmetic means 

and as error bars. When summed data are presented instead of means, total errors are 

propagated using the analytical uncertainties of each measurement.
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Figure 2.1: Station Map. 2011 (blue) and 2010 (red) with ice stations for both years (black); 
ice stations further emphasized with black rectangles. Sections of the cruise were grouped 
and labeled for comparison; Bering Strait (BS), Kotzebue Sound (KS), Point Hope (PH), 
Center Channel (CC), Icy Cape (IC), North Chukchi (NC), Hanna Shoal South (HSS), 
Chukchi Slope West (CSW), Hanna Shoal North (HSN), Barrow Canyon Head (BCH) 
Barrow Canyon Center (BCC) Hanna Shoal South East (HSSE), Hanna Shoal East (HSE), 
Chukchi Slope East (CSE), Chukchi Slope Center (CSC), Barrow Canyon Mouth (BCM), 
Chukchi Slope (CS), and East of Barrow (EB).
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CHAPTER 3 

RESULTS 

3.1 Physical Regime 

Waters make their way through the eastern Chukchi Sea in one of two major 

water masses: the Alaskan Coastal Waters or the Chukchi Summer Waters (von Appen 

and Pickart 2012, Brugler et al. 2014), which is also referred to as Bering Sea Water 

(Gong and Pickart 2015), Summer Bering Sea Water (Steele et al. 2004), and Eastern 

Chukchi Summer Water (Shimada et al. 2001).  The Alaskan Coastal Waters are pumped 

through the Chukchi Sea by the Alaskan Coastal Current (ACC) and remain trapped 

within 50 m of the coast (Schumacher and Reed 1986). However, the Chukchi Summer 

Waters (CSW) move through the Chukchi Sea in a variety of pathways. These waters 

enter into the Arctic Ocean via four main routes: Long Strait, Herald Valley, Central 

Channel, and Barrow Canyon. Barrow Canyon is the fastest flowing output with rates up 

to 1Sv during the summer months, and is the major exit pathway assessed in this study 

(Münchow et al. 1999, Weingartner et al. 2005). As waters exit Barrow Canyon, they are 

squeezed into the Beaufort Shelf Jet, a narrow shelf break, as they make their way into 

the Beaufort Sea (Pickart 2004, Nikolopoulos et al. 2009).   

Between the 2010 and 2011 cruises, important differences in the physical regime 

of the water column were observed. During the 2011 cruise, sea ice retreat was extensive, 

allowing samples to be collected farther into the Chukchi Sea and into the Beaufort Sea. 

This alteration in ice melt may have been caused in part by the increase in warm, fresh
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 waters entering Kotzebue Sound from the Noatak, Selawik, and Kobuk Rivers. The 

warm water intrusion also resulted in an increase in stratification in 2011 relative to 2010. 

The ACC was notably less constrained during 2011 and mixed with the Chukchi Summer 

Waters.  These water masses are therefore more difficult to identify, particularly in the 

northern region. The Chukchi Sea Environmental Studies Program noted that the winds 

during 2010 were weaker and more variable from July to September, while the 2011 

northeasterly winds were more prominent and lasted from June to October 

(www.Chukchiscience.com/science, 7 Nov. 2014). These winds contributed to the 

observed decrease in the ACC strength, and a reduction in the Beaufort Shelf Jet during 

2011 compared to that of 2010.    

In order to better understand spatial and temporal differences, data were sorted by 

year, transect, depth (mixed layer, mid waters, and bottom waters) as well as overall 

region and water mass (inshore of ACC, referred to as inshore , the ACC, and offshore of 

ACC waters, referred to as offshore). ACC waters were separated by specific sampling 

depths according to measured temperatures and salinities (See Section 2.1) rather than by 

entire stations, as many stations did not contain ACC waters throughout all depths 

(Figure 3.1).  Seventeen transects were analyzed, nine of which were sampled during 

both cruises (Figure 2.1). The Barrow Canyon Center transect was chosen for direct 

comparison to the Bering Strait transect because the Beaufort Shelf jet is a major outflow 

pathway of ACC waters into the Arctic Ocean, and thus reflects the alterations that occur 

to Pacific waters as they travel through the Chukchi Sea. Mixed layer depths were 

determined by density differences greater than 0.125 corresponding to temperature 

differences of 0.5°C as outlined by Monterey and Levitus (1997), with an average mixed 
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layer depth of 9 ± 8 m in 2010 and 9 ± 7 m in 2011. Bottom waters were defined as all 

waters within 5 m of seafloor, and middle waters are defined as all waters falling between 

the mixed layer and bottom waters.  

3.2 Water Column Dissolved P 

Dissolved P concentrations within the Chukchi Sea varied widely, from a 

minimum of 0.39 µM in the mid waters of Kotzebue Sound in 2011, to a maximum of 

3.61 µM within mid waters of Chukchi Slope West in 2011.  Mixed layer SRP 

concentrations ranged from 0.11 to 1.97 µM and averaged 0.60 ± 0.35 µM and 0.58 ± 

0.21 µM in 2010 and 2011.  DOP concentrations ranged from < 0.07 µM to 2.06 µM 

averaging 0.52 ± 0.32 µM (46 ± 18% of TDP) and 0.46 ± 0.23 µM (43 ± 15% of TDP) in 

2010 and 2011, respectively.  There were no clear trends in either SRP or DOP with total 

chlorophyll a.  SRP concentrations in the mid-waters varied from 0.07 to 2.24 µM and 

was significantly higher in 2011 versus 2010, 0.77 ± 0.42 µM versus 1.03 ± 0.50 µM (p 

<0.001). Total dissolved P concentrations in the bottom waters had little interannual 

variability averaging 1.64 ± 0.49 µM and 1.63 ± 0.60 µM in 2010 and 2011, respectively. 

Bottom water SRP concentrations dominated the dissolved P pool (2010 = 67 ± 19% ; 

2011 = 60 ± 23%), ranging from 0.31 to 2.23 µM and averaged 1.11 ± 0.51 µM and 1.06 

± 0.49 µM in 2010 and 2011, respectively. DOP concentrations were significantly lower 

(p < 0.001), ranging from < 0.7 to 2.17 µM and averaging 0.54 ± 0.38 µM and 0.60 ± 

0.41 µM in 2010 and 2011.  

Closer examination of the various water masses within the Chukchi Sea showed 

significant differences between ACC and non ACC waters depending on the study year 

(Figure 3.1).  SRP concentrations were similar in offshore waters, averaging 0.80 ± 0.46 
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µM in 2010 and 0.94 ± 0.49 µM in 2011. These concentrations however, were always 

significantly higher than inshore waters, which averaged 0.57 ± 0.19 µM and 0.49 ± 0.13 

µM, and ACC waters, which averaged 0.53 ± 0.28 µM and 0.58 ± 0.19 µM in 2010 and 

2011, respectively (p < 0.001).  In 2010, DOP concentrations consistently decreased from 

inshore (0.69 ± 0.38 µM) to offshore (0.50 ± 0.3 6 µM; p = 0.016), while no significant 

differences were observed in 2011 (average DOP concentrations of 0.49 ± 0.30 µM).  

Combined, observed water mass and temporal differences drove overall changes in TDP 

concentrations, with inshore waters decreasing from 1.26 ± 0.50 µM in 2010 to 1.01 ± 

0.15 µM in 2011 (p = 0.029), offshore waters increasing from 1.19 ± 0.28 µM in 2010 to 

1.41 ± 0.59 µM in 2011 (p = 0.007) and ACC waters remaining relatively unchanged.     

On a regional basis, most of the variability observed in P concentrations and 

composition occurred within the mixed layer, with average regional SRP concentrations 

increasing from an average of 0.74 ± 0.43 µM in 2010 to 0.89 ± 0.48 µM in 2011 (p < 

0.05) mainly due to higher SRP concentrations observed in three transects: North 

Chukchi, Hanna Shoal North, and Barrow Canyon Center (data not shown).  In contrast, 

average DOP concentrations remained relatively similar, 0.52 ± 0.36 µM in 2010 and 

0.49 ± 0.30 µM in 2011.  High variability in both SRP and DOP concentrations 

throughout the region resulted in similar average TDP concentrations of 1.26 ± 0.53 µM 

in 2010 and 1.37 ± 0.57 µM in 2011.  In comparing the dissolved P pools within waters 

entering (Bering Strait) to those exiting (Barrow Canyon Center) no significant 

concentration alterations were present within or among years (Table 1). 
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3.3 Water Column Particulate P  

Particulate P concentrations within the Chukchi Sea were lower and more variable 

than their dissolved counterparts and had no significant trends with depth or year. TPP 

ranged from < 0.07 µM to a maximum of 1.44 µM.  Mixed layer PIP concentrations 

ranged from < 0.7 µM to 0.54 µM and averaged 0.12 ± 0.12 µM and 0.09 ± 0.07 µM in 

2010 and 2011, respectively.  POP concentrations ranged from < 0.07 µM to 0.95 µM 

and averaged 0.10 ± 0.12 µM and 0.07 ± 0.08 µM in 2010 and 2011. Particulate P 

concentrations were relatively stable with increasing depth. PIP concentrations in the 

mid-waters averaged 0.12 ± 0.14 µM and 0.08 ± 0.11 µM in 2010 and 2011 and POP 

concentrations averaged 0.11 ± 0.14 µM to 0.07 ± 0.10 µM.  Bottom waters had similar 

trends (PIP, 0.14 ± 0.13 µM to 0.14 ± 0.12 µM; POP, 0.10 ± 0.09 µM to 0.11 ± 0.14 µM 

in 2010 and 2011 respectively).  

Though low throughout the Chukchi Sea, TPP concentrations were always 

significantly higher in offshore waters relative to both ACC and inshore waters during 

both years, averaging 0.24 ± 0.26 µM and 0.17 ± 0.19 µM (p2010 and 2011 ACC <0.001, 

p2010inshore = 0.024, p2011inshore <0.001) versus average ACC concentrations of 0.15 

± 0.08 µM during both 2010 and 2011, and inshore values of 0.19 ± 0.16 µM in 2010 and 

0.12 ± 0.05 µM in 2011.  Offshore and inshore waters experienced significant declines in 

particulate P concentrations relative to 2010 (poffshore < 0.001, and pinshore = 0.005).  

Higher offshore particulate P concentrations were associated with significant increases in 

chlorophyll a, which averaged 5.66 ± 9.27 µg L-1 and 3.28 ± 0.63 µg L-1 respectively (p 

< 0.001). TPP concentrations in offshore waters were almost evenly divided between 

POP and PIP concentrations (Figure 3.1).  ACC and inshore waters contained 
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significantly lower PIP and POP concentrations (ACC, PIP = 0.09 ± 0.06 µM, 0.10 ± 

0.05 µM during 2010 and 2011; inshore PIP = 0.09 ± 0.09 µM in 2010 and below 

detection in 2011; ACC, POP = averaged below detection during both years; inshore POP 

= 0.09 ± 0.10 in 2010 and below detection in 2011) and had little to no interannual 

variability. 

Unlike the dissolved P pool, the particulate P pools entering the Chukchi Sea 

decreased significantly from 2010 to 2011, however the particulate P exiting via Barrow 

Canyon Center remained relatively unchanged. During 2010 TPP declined 57%, 

decreasing from an average of 0.30 ± 0.20 µM within the Bering Strait to 0.13 ± 0.08 µM 

within Barrow Canyon Center (p < 0.001). This significant reduction was present in both 

the inorganic and organic phases with PIP falling 58% to 0.08 ± 0.05 µM (p < 0.001) and 

POP falling 45% to below detection limits (p = 0.015).  There was little annual difference 

present within Barrow Canyon center, however Bering Strait decreased by over half 

within each of the particulate pools (p<0.001) from 2010 to 2011. 

3.4 Water Column Total P Speciation 

Between 2010 and 2011 cruises, the water column experienced no significant 

changes in the regional average total phosphorus (TP) concentration, yet nearly all of the 

particulate and dissolved components of the P pool varied significantly (p < 0.001) 

between years, with the exception of DOP. On average, TP was comprised of 54 ± 17% 

SRP, 34 ± 16% DOP, 7 ± 6% PIP and 5 ± 6% POP.  Some transects remained relatively 

constant in their TP concentrations and composition, while others were highly variable 

(data not shown).  For example, during 2010, the highest mixed layer TP concentrations 

were measured in Central Channel, averaging 2.16 ± 0.76 µM, with the DOP fraction 
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dominating (44 ± 14%), whereas the mixed layer within Barrow Canyon Center had the 

lowest TP concentrations (1.21 ± 0. 51 µM) and was almost equally split between SRP 

and DOP. In 2011, the highest mixed layer TP concentrations were measured in Chukchi 

Slope West (2.05 ± 0.75 µM) and the lowest concentrations were found East of Barrow 

(1.23 ± 0.41 µM). SRP was the dominant component of both transects, 61 ± 15% and 69 

± 15% respectively. There were no trends with increasing latitude.  

Within the water column, a significant decline in mixed layer TP was observed, 

decreasing from 1.35 ± 0.55 µM in 2010 to 1.19 ± 0.36 µM in 2011 (p = 0.003). In 

contrast the mid-waters had small, but significant increases in TP from 1.52 ± 0.63 µM in 

2010 to 1.65 ± 0.68 µM in 2011 (p = 0.046). The bottom waters did not experience any 

annual change between 2010 and 2011, averaging 1.87 ± 0.64 µM.    

During both cruise years, offshore TP concentrations were significantly higher 

than ACC waters 1.54 ± 0.64 µM versus 1.24 ± 0.42 µM in 2010 (p < 0.001) and 1.58 ± 

0.67 µM versus 1.27 ± 0.32 µM in 2011 (p < 0.001). During 2010, inshore water 

concentrations fell between offshore and ACC waters to 1.46 ± 0.51 µM. In 2011 inshore 

waters declined even further, down to 1.12 ± 0.16 µM. The most prevalent P pool within 

inshore and ACC waters was the dissolved phase at 88 ± 5%, with similar distributions 

between inorganic and organic pool and no significant changes with year.  Offshore 

waters consisted of a significantly different P pool as these waters were dominated 

mainly by SRP (49 ± 17% in 2010 and 59 ± 17% in 2011).  As waters made their way 

through the Chukchi from Bering Strait to Barrow Canyon Center, little change in the 

total P concentration occurred due to the dominance of the dissolved P pool during both 

cruise years. 
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3.5 Water Column Elemental Stoichiometry  

In order to place P pool concentrations and distributions in perspective, dissolved 

and particulate P concentrations were compared to dissolved inorganic nitrogen (DIN = 

NO3- + NO2- + NH4+) POC, and PN with depth (mixed layer, mid waters, bottom 

waters) and with water mass (inshore, ACC, offshore) (Figure 3.2-3.5).  In the mixed 

layer, SRP concentrations were plentiful with respect to DIN in all inshore and ACC 

waters (Figure 3.2).  Offshore waters had bifurcated trends, with one data set 

characterized by high SRP concentrations and below detection DIN, and a second data set 

characterized by a DIN:SRP ratio of 5 (R2 = 0.29) (when all DIN data < 2 µM are not 

considered).  Moving deeper into the water column to the middle and deep waters, 

nitrogen depletion was reduced, with a DIN:SRP ratio of 10:1 (R2 = 0.56) and 10:1 (R2 = 

0.52) respectively.  In 2011, Atlantic waters were also sampled and were characterized by 

lower DIN:SRP ratios of 1.6:1 (R2 = 0.31).  There were no significant differences 

between sample years with regards to the DIN:SRP ratio (p > 0.05).  

In order to understand particulate stoichiometry, POC and PN concentrations 

versus both POP and TPP were examined (Figure 3.3 & 3.4).  While TPP is typically 

assumed to be derived solely from biological activity in the open ocean, coastal waters 

are more complex due to terrigenous fluxes from the near shore that may add non-living 

and mineral P (PIP) to the system (Benitez-Nelson, 2000). POP concentrations also 

underestimate biologically derived inorganic P components, such as polyphosphate 

(Hupfer et al. 2008).  In contrast to the dissolved phase, particulate elemental ratios 

varied not only with depth, but with year as well, and had similar trends across all water 

masses, albeit data were limited.   
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Within the mixed layer, 69% of the PN concentration can be explained by 

changes in POC with a POC: PN ratio of 8:1 (Figure 3.5). With depth, this relationship 

moved closer to canonical Redfield et al. (1958) ratios of 7:1, with the correlation 

increasing in strength to 81% and 75% within the mid and bottom waters respectively. 

The POC:POP (TPP) ratio was higher than the Redfield ratio at 180:1 (R2 = 0.58), 

however when the inorganic fraction is included the ratio fell to 104:1 and the 

relationship was reduced in strength (R2 = 0.52) (Figure 3.3). A similar decline was 

observed for PN to particulate P ratios as well, with a PN: POP ratio of 13:1 (R2 = 0.30) 

and PN:TPP ratio of 10:1 (R2=0.46) (Figure 3.4).  Samples collected during under ice 

blooms in 2010 and 2011 were different from the bulk dataset and from one another, with 

significantly higher POC: PN: POP (TPP) ratios of 898:52:1 (274:16:1) in 2010 and 

below detection POP (784:124:1) in 2011 suggesting rapid biological uptake and 

production of vey labile organic matter.  

Middle waters were characterized by lower POC:POP (TPP), and POC: PN but 

higher PN: POP (TPP) ratios than those measured in the surface and were consistent with 

preferential remineralization of P relative to N with increasing depth, even in this shallow 

sea (Figure 3.3-3.5).  There were no significant differences between the various water 

masses or with year.  Deeper waters were characterized by significantly different 

elemental ratios than those found in the mixed layer and in middle waters as ratios 

decline and relationship strength was reduced.   

DIN and SRP concentrations experience minute changes between the time they 

enter the Chukchi Sea via the Bering Strait and exit via Barrow Canyon Center. 

Furthermore, there were no significant dissolved nutrient patterns. In contrast, although 
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the particulate pool was only a small component of the total P pool, elemental ratios 

declined from the Bering Strait (POC:PN:TPP = 2010 78:11:1, 2011 65:12:1) to Barrow 

Canyon (201047:6:1, 201113:2:1) (Table 1). The declining relationship both from 2010 

to 2011 and from Bering Strait to Barrow Canyon Center, was driven by the large scale 

reduction in POC and PN concentrations. While POP and TPP concentrations also 

declined, this decrease was not to the same extent, thus decoupling the relationships 

between POC:POP (TPP) and PN:POP (TPP).  

3.6 Sea Ice  

In order to understand the potential role of sea ice melt on the underlying water 

column, P inventories were determined within the entirety of each core compared to the 

nutrient inventories measured in the corresponding mixed layer of the sampled station.  

Mixed layer inventories were determined using a uniform depth of 5 m, as the average 

mixed layer below the ice sheets was 5 ± 1 m in 2010 and 5 ± 4 m in 2011. Sea Ice SRP 

and DOP concentrations were only measured in 2011 averaged 6.23 ± 0.80 µmol m-2 and 

9.97 ± 4.42 µmol m-2 respectively, and showed no clear trends within each ice core 

(Figure 3.6). While average TDP and SRP concentrations were significantly lower than 

underlying mixed layer waters (p < 0.05), average DOP concentrations were similar.   

TPP and PIP concentrations were measured in both 2010 and 2011 and were significantly 

different between years (Figure 3.7).  In 2010, particulate P concentrations averaged 

12.35 ± 12.93 µmol m-2 and 6.14 ± 7.86 µmol m-2, while in 2011, concentrations were 

over 10 times lower, averaging 0.94 ± 0.47 µmol m-2 and 0.60 ± 0.23 µmol m-2.  These 

differences are likely due to sampling location (offshore in 2011, inshore in 2010) 

although temporal differences cannot be dismissed.   
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If all of the first year ice measured were to melt, TP concentrations in the upper 5 

meters would decline to 28.45 ± 5.91 µmol m-2 (28%).  Average DOP would decline the 

least, dropping by 0.28 µmol m-2 or 3% to 10.24 ± 0.99 µmol m-2. Thus much of the 

changes that would occur in the TDP pool are driven by dilution of SRP, which would 

decline by 35% to 13.53 ± 3.68 µmol m-2. In the particulate phases both PIP and POP 

would decline by nearly 50%, to 2.49 ± 1.04 µmol m-2 and 2.20 ± 1.75 µmol m-2, 

respectively. DIN concentrations were much more variable and ice melt would result in 

an overall decrease of 6% to an average of 8.66 ± 6.57 µmol m-2. 

Nutrient ratios within the sea ice were analyzed by year and ice type (i.e. 

sediment-laden vs. clean) (Figure 3.8).  Sediment-laden sea ice had substantially higher 

PC and PN concentrations and higher C:N:P  ratios (456:31:1) compared to those of both 

2010 clean ice (34:2:1) and 2011 clean ice (143:27:1).  While all sea ice collected in 2011 

had considerably lower nutrient concentrations, elemental ratios were much closer to 

canonical Redfield et al. (1958) ratios of 106:16:1. 
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Table 3.1: Average concentrations (± standard deviation) alongside nutrient ratios within the Bering Strait (n2010 = 28, n2011 = 12) and 
Barrow Canyon Center (n2010 = 27, n2011=24) transects. Bold letter indicates significant annual differences within sites (<0.05), while 
underlined text indicates interannual differences between sites (<0.05). 
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Figure 3.1: Average Total P concentration and speciation with depth in offshore waters, ACC 
waters and Stations, and Inshore waters, during both 2010 and 2011 cruises. Percent 
compositions provided, * represents significant shifts in percent composition of the total P pool, 
while + represents concentration disparity. Error bars indicate standard deviation. 
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Figure 3.2: DIN:SRP (µM) within the mixed layer (R2 = 
0.43), middle waters (R2 = 0.60 excluding Atlantic waters), 
and bottom waters (R2 = 0.42) during both 2010 and 2011 
cruises, with Offshore (squares), ACC waters (diamonds), 
and Inshore (triangles) plotted separately for comparison. 
Linear relationship includes all stations from each of the 
three regions, but excludes any samples with DIN below 2 
µM. All p-values < 0.001



www.manaraa.com

 

24 

 

 

Figure 3.3: POC: POP within mixed layer (R2=0.42), middle waters (R2=0.48), and bottom 
waters (R2=0.13), as well as PN:TPP within layer (R2=0.54), middle waters (R2=0.59), and 
bottom waters (R2=0.30), during both 2010 and 2011 cruises. Offshore (squares), ACC 
waters (diamonds), and Inshore (triangles) plotted separately for comparison. All p-values 
< 0.001
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Figure 3.4: PN: POP within mixed layer (R2=0.32), middle waters (R2=0.46), and bottom 
waters (R2=0.17), as well as PN:TPP within layer (R2=0.52), middle waters (R2=0.59), and 
bottom waters (R2=0.37), during both 2010 and 2011 cruises. Offshore (squares), ACC 
waters (diamonds), and Inshore (triangles) plotted separately for comparison. All p-values 
< 0.001
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Figure 3.5: POC: PN within mixed layer (R2=0.67), middle 
waters (R2=0.81), and bottom waters (R2=0.72). Offshore 
(squares), ACC waters (diamonds), and Inshore (triangles) 
plotted separately for comparison. All p-values < 0.001
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Figure 3.6: Total P and TN (µmol m-2) inventories normalized to area for the three ice core 
stations sampled for P during the 2011 cruise, error bars represent analytical error.  
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Figure 3.7: Total particulate P (µmol m-2) inventories normalized to area for all ice cores sampled for 
P at all stations during both 2010 and 2011 cruises.
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Figure 3.8: Particulate C:N:P regression plots within 2010 sediment laden sea ice (C:N 
R2= ;C:P R2= ; N:P R2= ), 2010 clean ice (C:N R2= ;C:P R2= ; N:P R2= ), and 2011 clean 
ice(C:N R2= 0.64; C:P R2= 0.34; N:P R2= 0.55). All p-values < 0.00
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CHAPTER 4 

DISCUSSION 

As P makes its way through the Chukchi Sea and into the Arctic Ocean, P 

concentrations and composition are influenced by a variety of processes that include river 

runoff, bottom resuspension, biological activity, and sea ice melt. Most of these processes 

were evident during the 2010 and 2011 sampling periods, with the exception of 

resuspension, causing significant regional variability. 

4.1 Riverine Inputs and Bottom Resuspension  

Given the coastal nature of our sampling, riverine inputs may potentially supply P 

into the Chukchi Sea (e.g., Galloway et al. 1996, Ruttenberg 2003), particularly in 

Kotzebue Sound. Previous studies however, show that both the Yukon and Mackenzie 

rivers are relatively low in P (average fluxes of 1.9 x 109 and 1.5 x 109 g y-1 P) 

particularly relative to N (average fluxes of 19 - 24 x 109 and 12.5 x 24*109 g y-1 N) 

thus resulting in provided N:P ratios of about 10-13 and 8-16 respectively (Gordeev et al. 

1996, Holmes et al. 2012, Le Fouest et al. 2013).  This suggests that the smaller rivers 

feeding directly into the eastern Chukchi Sea (e.g., Noatak, Selawik, and Kobuk Rivers) 

are likely lower in P as well. Indeed, average dissolved P concentrations inshore of the 

ACC, are consistently lower than offshore waters and there was no difference in inshore 

P concentrations between 2010 and 2011(Figure 3.1).  While an increase in suspended 

particulate P is also possible, there was no clear evidence of high particulate P inshore 

relative to offshore, suggesting that if particulate P was sourced by rivers, it was rapidly 
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removed from the system  (Ruttenberg 2003, Benitez-Nelson 2000).  Zhang et al. (2010) 

examined sediment core nutrient concentrations and ratios inshore (near Icy Cape 

transect), and found TN:TP to be 1.6, while total N to total organic P was much higher at 

14.2. Their study highlights the dominance of terrestrial P within this shallow basin 

Bottom resuspension is another potential source of P to marine systems, 

particularly in shallow seas.  However there was little evidence that bottom resuspension 

occurred during our summer cruises.  On rare occurrence (fewer than 21% of the bottom 

water sampled), bottom water particulate P concentrations were elevated relative to that 

measured in the overlying mid water and mixed layer.  Increases in bottom water 

dissolved P concentrations may occur due to resuspension or remineralization of P.  

Souza et al. (2014b) found a significant efflux of P from sediments at stations located 

within the inshore and offshore regions in this study area, but found uptake of phosphate 

via sediments located within the ACC.   

While increases in dissolved P occurred with increasing depth in the Chukchi Sea, 

our data did not allow us to differentiate whether the increase was due to regeneration of 

P from sediments or remineralization of P from sinking material from above. As 

mentioned previously, sediment cores taken close in proximity to our sampling region are 

characterized by N:P ratios of 14.2, considerably higher than the average N:P ratio of 6 

measured in bottom waters in this study (Figure 3.4). This suggests that sediment 

resuspension was not a dominant source of P to the water column during our study. 

Rather, the decline in N:P ratios in bottom waters was likely due to preferential removal 

of nitrogen via denitrification (see Section 4.2).  
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4.2 Biology 

Phosphorus plays a key role in a number of biochemical reactions within marine 

systems by influencing  biological production as well as community composition and 

food web structure (Karl 2014).  In order to understand the potential role of P in the 

Chukchi Sea, however, we need to consider both N and C as well. For decades, the 

concept that all marine phytoplankton have a fixed “Redfield” ratio of C, N, to P has been 

the foundation of numerous studies that examine carbon and nutrient biogeochemistry in 

marine systems.  In essence, any deviation in the elemental ratios of C , N, and P from 

canonical Redfield ratios is often used to determine nutrient limitation or stress (Redfield 

1958, Tyrrell 1999). However, the relationships between these elements are often 

decoupled, particularly in nearshore regimes, owing to changes in nutrient source, food 

web dynamics, and physical forcing (Karl et al. 1997, Weber and Deutsch 2010, Martin 

et al. 2014).   

During both the 2010 and 2011 ICESCAPE cruises within the Chukchi Sea, 

dissolved and particulate N and P concentrations were poorly correlated relative to POC 

and PN (Figure 3.2-3.5).  In surface waters, dissolved N concentrations in the mixed layer 

for most of our study region were below detection, suggesting strong N limitation, 

consistent with other work (Cota et al. 1996, Mills et al. 2015).  Only in offshore waters 

and with increasing depth do dissolved nutrient relationships begin to emerge (Figure 

3.2).  When DIN is exhausted in surface waters, SRP concentrations remain high, 

averaging 1.30 µM, with an N:P ratio < 2.  As a result, there was a significant source of 

dissolved P entering the Arctic Ocean within the surface waters alone and is a major 

source of “excess” P relative to N within the Arctic Ocean.  Indeed, recent studies 
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suggest that the Arctic Ocean as a whole is a net exporter of phosphate (~ 1.0 ± 0.3 kmol 

s−1, net ± 1std error) to the North Atlantic (Torres-Valdés et al. 2013).  In fact, this is 

likely an underestimate of P, due to the high DOP concentrations and thus, high DOP 

export to the Arctic Ocean.  Such low dissolved N:P ratios within the Arctic Ocean 

provide an ideal environment for nitrogen fixation and are likely a major  driving factor 

in the high nitrogen fixation rates observed downstream within the northern Atlantic 

Ocean (Yamamoto-Kawai et al. 2006). 

As one moves deeper into the water column SRP and DIN relationships begin to 

emerge due to the remineralization of sinking organic matter. DIN:SRP ratios in offshore 

mixed layer and mid waters throughout the Chukchi Sea ranged from 7-9.1 consistent 

with biological activity associated with low N:P sinking material (see below, Martiny et 

al. 2013), or removal of DIN via denitrification (Mills et al. 2015).  Similar ratios were 

presented in Souza et al.’s (2014) study of N:P within the surface and bottom waters 

throughout the Chukchi Sea. Their findings indicate dissolved inorganic surface water 

N:P ratios vary between 0.4 - 3.5 and deep water N:P ratios range from 6 - 15.  

Particulate N:P ratios were also quite variable throughout the Chukchi Sea (Figure 

3.4). It is now recognized that various groups of marine phytoplankton have N:P ratios 

that span a factor of 5 or more (Geider and La Roche 2002, Bertilsson et al. 2003, Ho et 

al. 2003, Martiny et al. 2013).  Most of this N:P plasticity is attributed to the ability of 

cyanobacteria to utilize nitrogen from the atmosphere for their nutritional N needs (e.g., 

nitrogen fixation) as well as the bioaccumulation of inorganic and oxidized organic P 

forms that contain minimal N (e.g., polyphosphate or phospholipids) even during times 

periods when dissolved P concentrations are quite low (< 0.05 µM) (Orchard et al. 2010, 
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Martin et al. 2014).  Recently, Martiny et al. (2013) presented a global compilation of 

particulate C:N:P ratios and found significantly lower ratios than traditional Redfield 

within the polar regions (78:13:1).  These low C:N:P ratios are generally the result of 

high diatom abundances as they tend to utilize much more P relative to other 

phytoplankton communities  (Twining et al. 2004).  Therefore, lower C:N:P values were 

expected with the abundant diatom community present within the Chukchi Sea during the 

2010-2011 sampling periods (Hill et al. 2005).  Ratios may decline even further with 

depth due to extensive denitrification in the mid and deep waters during our study (Mills 

et al. 2015).  Indeed, N:P ratios range from 6:1 to 16:1 depending on depth and the form 

of particulate P used in the ratio analysis. 

4.3 The Role of Sea Ice 

Alterations in warm Pacific water movement is likely a dominating factor in the 

increased sea ice melt specific to this region during 2011 (Brugler et al. 2014). As such, 

the 2011 ICESCAPE’s cruise did not have the opportunity to sample sea ice in close 

proximity to land masses, and extended farther north than the 2010 cruise. This earlier ice 

retreat seemingly led to the increased stratification observed in 2011.   

Within the sea ice there were large annual variations with 2010 ice cores 

experiencing particulate P values up to 35 times higher than that measured in 2011 sea 

ice (Figure 3.7). The reasoning behind this difference is unclear as it could be tied to both 

annual and spatial variations.  In 2010, sea ice cores were collected much closer to land 

and were visibly more sediment laden.  Although not all near shore (2010) samples were 

sediment laden, they still held a considerably higher amount of particulate P.  The 

variability noted in both the dissolved and particulate P concentrations were as expected. 
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Sea ice, particularly in the shallow Chukchi Sea, reaches the seafloor, and therefore can 

potentially include the benthos allowing for nutrient regeneration within the ice core 

(Gradinger and Ikävalko 1998). All ice is not created equal, thus resulting in considerable 

variability within each ice core.  This patchiness is attributed to the depth at which the ice 

was formed (Reimnitz et al. 1992), what kind of dust/snow inputs occurred in the region 

(Ehn et al. 2004, Nomura et al. 2011), and when melt ponds were present or ice had 

thinned, and the magnitude of biological production within the ice (Arrigo 2014, Garrison 

et al.1986, Gradinger and Ikävalko 1998). 

Variations in sea ice (i.e., sediment laden versus “clean”) have large impacts on 

the nutrient ratios within the core, and thus, on the surrounding environment when the ice 

melts (Figure 3.8).  In 2010, sediment laden sea ice particulate C:N:P ratios of 456:31:1 

were even higher than generally found in terrestrial environments (Elser et al. 2000). This 

suggests that as N is added to the system during ice melt, the Chukhci Sea may become 

less nitrogen limited for a transient period. Clean sea ice present must also be considered 

in future implication of the nutrient pools. During the same cruise (2010) clean sea ice 

nutrient ratios were significantly lower (34:2:1). As such, the addition of clean sea ice 

melt would likely lead to the exacerbation of N limitation in this already N limited 

system. Due to the higher nutrient ratios (168:30:1) examined in the offshore 2011 ice 

cores, it is more likely that increased sea ice melt would alleviate nitrogen limitation and 

therefore, increase water column primary production within the Chukchi Sea.  

During the ICESCAPE cruises phytoplankton blooms occurred under ice, 

possibly fueled by nutrient input from melting sea ice. Melnikov et al. (2002) found that 

when ice was sampled in spring (April, just before ice melt), SRP concentrations were 
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much higher than concentrations observed in the following Fall, implying that phosphate 

increases in sea ice over time.  However, when nutrient inputs from sea ice melt are 

adjusted to the volume of fresh water melted into the mixed layer, there is a significant 

dilution effect. The dilution is relatively small for DIN, but significant for SRP, thereby 

impacting the nutrient ratio.  Given that Chukchi Sea blooms are likely nitrogen limited 

(Hameedi 1978, Arrigo et al. 2012, Mills et al. 2015), dilution does not appear to inhibit 

blooms from occurring; although it may impact the biological diversity, at least on a 

transient basis, of responding organisms as ice melt expands.



www.manaraa.com

 

37 

CHAPTER 5 

CONCLUSION

Due to climate change and biological abundance, studies within the Chukchi and 

Beaufort seas have increased throughout the years. Many of these studies have aimed to 

aid in scientific collections for NOAA fisheries service as a decision to open the Arctic 

region to commercial fisheries.  However as climate continues to change and the P supply 

continues to shift, there could be a fundamental change in ecosystem structure within the 

Chukchi Sea and Arctic region. This idea is not farfetched as the much studied Bering 

Sea has encountered a shift from a benthic to a pelagic environment (Grebmeier 2012).  

With increasing stratification due to winds (Brugler et al. 2014), resuspension may be 

reduced in a future Arctic. DIN and SRP experience an anticipated relationship at several 

stations in the offshore waters, likely because other sources of P are added to the system, 

e.g., bottom water mixing, and coastal inputs are reduced. Due to the relatively small 

amount of P data collected in this region it is unknown if the decoupling has always 

occurred or whether it is a new or seasonal phenomenon. 

The Arctic has been attributed to the increasing P concentration within the 

Atlantic that fuels nitrogen fixation (Yamamoto-Kawai et al. 2006). This study shows the 

drawdown of N:P occurs as waters travel through the Chukchi and make their way into 

the Arctic. This study shows that this shift of N:P is likely due to the drastic draw down 

of N rather than increasing  P concentrations as waters make their way into the Atlantic. 

This shift in N:P ratios will  exacerbate the already N limited system. With sea ice adding



www.manaraa.com

 

38 

more N relative to P (though may still dilute both pools) it is possible that during the melt 

season N will become less limiting than in prior years. This shift may also cause an 

alteration in the phytoplankton community structure, further altering the nutrient 

abundances and ratios in addition to the overall ecosystem (Twining et al. 2004).
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